If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+48t+19
We move all terms to the left:
0-(-16t^2+48t+19)=0
We add all the numbers together, and all the variables
-(-16t^2+48t+19)=0
We get rid of parentheses
16t^2-48t-19=0
a = 16; b = -48; c = -19;
Δ = b2-4ac
Δ = -482-4·16·(-19)
Δ = 3520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3520}=\sqrt{64*55}=\sqrt{64}*\sqrt{55}=8\sqrt{55}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-8\sqrt{55}}{2*16}=\frac{48-8\sqrt{55}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+8\sqrt{55}}{2*16}=\frac{48+8\sqrt{55}}{32} $
| x2=-15x | | -7(x-7)=-5x+41 | | (2x)+x=72 | | 3(2n-2)=(2n+1)+7 | | 8+8(x+4)=32 | | y=84∗16 | | (x-8)2=256 | | -89+x=69 | | 68=1/5(20x+50)+3 | | 4x+16-3x=-7-11 | | -219+8x+x=69 | | -27+4n=47 | | X-13x-109=83 | | 2/5•w=40 | | 5x+x-7=5x+6 | | 3y-1=-5 | | 6x+7x-207=131 | | 3x2-270=0 | | -7(2x-3)=14 | | -5x-197-15x=143 | | 2(x-8)-3(x=2)=-24 | | Y=4x+2;(2,10) | | 9x-151+3x=53 | | 19(9)=x | | 4d+7=5d+13 | | 164=-y+208 | | 9x+2x-156=119 | | 2x+1/3=x-1 | | 10x+19x-26=90 | | 257-x=172 | | 1.1x-5.4=-10 | | -14x-126+5x=207 |